当前位置: 医疗机械 >> 医疗机械优势 >> 血管里的迷你医生纳米机器人照进现实还有多
7月末,医院、国家科学研究中心和蒙彼利埃大学的科学家们在《自然·通讯》杂志上发表了他们用DNA建造的纳米机器人的文章。科学家们用纳米机器人了解细胞机械敏感性的分子机制,以研究许多生物和病理过程。
早在年上映的科幻电影《神奇旅程》中,人们就有了关于治疗疾病的全新想象:从修补、治疗人体的单个细胞着手对付疾病。电影中,外科医生被缩小为几百万分之一,乘坐微缩潜水艇进入人体内进行血管手术。
这并非天方夜谭。在微观世界里,科学家们寄希望于纳米机器人可以到达人类不能到达的地方,比如血液。如果投入临床使用,它们将在十亿分之一米的尺度上,在人体内巡航、投放药物、开展细胞微“手术”……为人类疾病诊断和治疗开辟全新的可能性。
年,距离《科学》杂志上一次发布个推动基础科学研究的科学难题16年后,该杂志再次发布了全球最前沿的个科学问题。其中,在人工智能领域,首当其冲的问题是:可注射的抗病纳米机器人会成为现实吗?
血管里的全能“医生”
在生物技术领域的舞台上,近两年,因为全球新冠大流行,最“风光无两”的当属mRNA技术:辉瑞/BioNTech与莫德纳两款mRNA疫苗的成功,将这一新技术一下子推到聚光灯下,上千亿美元的收入,使其成为制药史上最赚钱的“黑马”。
人类发现mRNA(信使核糖核酸)已经超过60年,不过,受mRNA在体内快速降解等关键问题的阻碍,该技术进展缓慢。进入21世纪,脂质纳米粒子(LNP)作为载体的递送技术,一定程度上解决了mRNA在体内易降解和递送效率低等问题,使mRNA技术快速发展并进入临床应用。
美国乔治亚大学物理系杰出研究教授赵奕平告诉《中国新闻周刊》,从年代纳米技术兴起以来,驱动它发展的一个很重要的动力是芯片的研发。不过,后来这个领域的驱动力逐渐转向了医学应用。年,中国微米纳米技术学会写道:纳米技术与生物医学结合的纳米生物学将是21世纪生命科学的重要组成部分,而纳米机器人也将会是纳米生物学中最具有诱惑力的成就。
不过,与我们通常所设想的“机器人”不一样,纳米机器人不是一些带着电池、芯片等各种电子器件并且拥有一副金属盔甲的样子。今天,即便最精密的机械加工技术,也还不能制造出在体内游动的传统机器人。纳米机器人是通过物理、化学的方法合成、制备出具有特殊结构和功能的分子和微纳米材料。
哈佛大学医学院助理教授、哈佛大医院杰出讲席教授陶伟是生物医学工程方向的科学家,他的研究内容主要聚焦在药物的智能递送系统上,“纳米机器人”正是很好的运输工具。他接受《中国新闻周刊》采访时表示,临床上其实有很多有效的药物,却不能很好地治疗疾病,其中一个原因是药物不能准确地到达病灶部位并针对性地释放药物,造成毒副作用大、治疗效果差等问题。
实际上,过去30多年,科学界发现,用纳米粒子作为载体实现药物精准递送的研究并没有取得预期的效果。用纳米颗粒包裹药物,注射到血液里面之后,它只能随着血液的流动而被动循环,递送效率与直接注射药物相比没有任何明显的区别,领域面临比较沮丧的局面。
随着纳米机器人领域兴起,药物精准递送有了新进展。纳米机器人可以在人体内自主流动,突破一系列体内的生物屏障,找到病变部位,完成药物投放,是精准医疗时代的重要组成部分。
以溶栓药物为例,赵奕平介绍,血液当中存在着一种组织型蛋白酶,能防止血液凝结。而老年人因为身体机能变化,血液容易在某个部位凝结产生血栓,尤其是脑部。作为治疗,医生会迅速向病人体内输入一种TPA(组织型蛋白酶原活化因子)的溶栓药物,但是,它会在全身流动,严重时可能会导致某个地方的血管壁破裂,而真正需要通栓的部位,治疗效率却只有20%。年,他的研究组以及合作者发表的文章中报告了一种办法,用磁力来引导纳米机器人,让这些纳米颗粒在血栓部位集结,再投放药物,能将所需药物剂量降低倍,而溶栓速率提高4倍。
对于更加棘手的递送部位,纳米机器人也在早期突破中显现出了积极的潜力。大脑是纳米机器人最难到达的地方,因为它们需要穿过血脑屏障——这是一种选择性非常高的生物防御系统,只允许一些营养物质和特定分子通过,将病原体拒之门外。脑胶质瘤被称为“大脑杀手”,是神经外科治疗中最棘手的肿瘤之一。由于这种肿瘤发生的位置很特殊,难以进行彻底的手术切除,残留的肿瘤细胞成为日后复发的根源。
想要治疗这一疾病,药物就要穿过血脑屏障。年,历经8年努力后,哈尔滨工业大学教授贺强团队设计了一种递送策略。他们将抗癌药物装入磁性纳米凝胶中,凝胶外用细菌膜“伪装”,隐藏在一种称为“中性粒细胞”的免疫细胞中。通过外部磁场和化学场的作用,纳米机器人穿过血脑屏障,实现脑胶质瘤部位的主动靶向药物递送。普通纳米载体递送效率大概是0.7%,这一新方法将抗肿瘤药物的递送效率提高到了约14%,文章于去年发表在《科学机器人》,是业内比较重要的研究进展。贺强说,未来递送效率还有望突破。
如今,在初步实验中,全球各地的纳米机器人科学家已经将这种微型机器用于治疗各种疾病的研究中。陶伟指出,在医学领域,除了药物递送,纳米机器人还可以用于疫苗制备、微观组织成像、疾病检测等。因为用途之广,贺强指出,纳米机器人对人类未来疾病诊断和治疗范式具有颠覆性的意义,“理论上,纳米机器人未来可以治疗所有疾病”。
大约10年前,当赵奕平的父母因为脑卒中疾病同时住院之后,他就开始对如何将纳米机器人用到中风领域感兴趣,并于年与合作者发表了业内将纳米机器人用于中风治疗的第一篇论文。一般而言,疾病治疗通常采用物理和化学两种方法,像手术、肾结石碎石就是前者,而药物就是后者。他们设计的一种纳米马达,同时结合了物理和化学两种方法,在机器人上面搭载了溶栓药物,当它们进入到中风部位时,除了释放药物外,还可以通过机器人与血栓的机械作用来疏通血管堵塞。这种治疗思路,也被称为“微纳手术”。
很少被人注意的是,在凝聚态物理领域,科学家们还将微纳米机器人用作一种模型,称为“活性胶体”,用以研究肿瘤的形成和转移机制,以及鸟群、鱼群等自然界复杂的群体行为。这一理论研究领域,近年来在国内外引起广泛
转载请注明:http://www.aideyishus.com/lkgx/2533.html