医疗机械

3D打印增材制造新材料医疗器械及相关监

发布时间:2022/11/17 17:57:51   
白癜风可以做漂白吗 http://news.39.net/bjzkhbzy/210620/9085212.html

相较于传统的材料成型或机械加工技术,增材制造(又称为3D打印)技术是一种自下而上、采用原材料自动累加的方式来制造实体零件的方法,凭借一台设备能够制造具有复杂几何形状和内部材料成分可变的产品,特别适合单件小批量和定制化产品的低成本制造。随着医疗服务逐步迈向精准化和定制化,3D打印-增材制造技术凭借与医疗行业发展方向相契合的优势,推动医用增材制造技术与相关医疗器械高速发展,并形成了生物制造领域的新学科方向。

在创新技术的推动下,增材制造新材料医疗器械不断升级迭代,基础研究与应用研究进展迅速,不少产品已实现产业化应用。随着3D打印-增材制造新材料医疗器械监管科学体系建设加快推进,相关标准体系建设不断完善,产品质量控制技术研究积极开展,增材制造新材料医疗器械有望在临床上得到广泛应用,更好地保护和促进公众健康。

爱康医疗

3D打印植入物

3D科学谷白皮书

基础与应用研究进展快速

根据原材料和成品的特征,从非生命体的构建到具有生命力活体的制造,增材制造医疗器械的发展通常被分为四个层面:

第一层面是体外使用的医疗器械,如假肢矫形器、手术模型等,这类产品不与人体内的组织发生长时间相互作用,因此对于材料生物相容性的要求较低;

第二层面是不可降解再生的硬组织植入物,典型的例子包括义齿、骨关节替代物等,由于其长期在人体内使用,对材料具有较高的生物相容性要求;

3D打印骨科植入物细分

3D科学谷白皮书

3D打印金属植入物-工艺-材料-设计-表征-应用

3D科学谷白皮书

第三层面是以组织工程支架为代表的可降解医疗器械,这类产品的材料应具有生物相容性,并可在诱导人体自体组织生长的同时逐渐被降解吸收,其理想目标是实现无异物的人体组织修复;

3D科学谷白皮书

第四层面则是活性组织的直接制造,也被称作细胞打印,是将具有活性功能的细胞和生物因子等作为原材料,通过3D打印技术制造具有生物功能的活性组织或器官。

经过多年发展,目前,第一、第二层面的体外医疗器械和不可降解的体内替代物已部分实现产业化应用;第三层面的可降解医疗器械已有大量临床研究和少量产业应用;第四层面的细胞打印仍处于前沿研究阶段。

体外医疗器械

增材制造医疗器械发展的第一层面主要包括用于示教演示的医疗模型、用于手术中定位的个性化导航模板以及体外使用的假肢矫形器等,其不长期与人体组织接触,通常被界定为第一类或第二类医疗器械。

在医疗模型方面,传统3D打印材料多为硬质塑料,而近年来国内外相继开发了低硬度的硅胶材料,获得了硬度接近于人体软组织、具有较好透明性的医疗模型;同时,全彩3D打印技术的发展使医疗模型的色彩也与人体更加相似。利用CT或MRI等设备扫描患处,再通过3D打印技术制造精确的医疗模型,用于术前方案研讨、手术方案模拟和医患沟通等场合,有助于缩短手术时间并提高患者的满意度。

目前,个性化导航模板在骨科领域已经获得了广泛应用,有效提高了手术的精准性和安全性,减少了由患者体位变化、解剖变异和操作者经验不足造成的手术偏差。由于手术导板为一次性使用医疗器械,考虑到成本等因素,通常使用耐高温消毒、具有生物相容性的光敏树脂或尼龙等热塑性塑料。

假肢矫形器等康复辅助器具通常由手工制作,主要包括石膏取模、修模、成型加工等步骤,而若采用3D打印技术,并结合数字扫描技术,则能够有效提高假肢矫形器的制作效率、贴合程度和佩戴舒适度。

目前,3D打印假肢矫形器的主要材料包括尼龙、聚乳酸(PLA)、丙烯腈-丁二烯-苯乙烯(ABS)和热塑性聚氨酯弹性体(TPU)等,仍存在力学性能不强、穿戴舒适性不足的问题,因此需要开发具有更高强度和舒适性的假肢矫形器新材料及其3D打印体系。例如,使用具有高强度的连续碳纤维与柔性的热塑性材料结合的复合材料,能够制造出与人体皮肤接触部位贴合性较好且承力部位具有较高强度的假肢矫形器产品。

增材制造体外医疗器械自20世纪90年代起已有应用,发展至今,其材料和制造技术均较为成熟,并已进入产业化发展阶段。

在医疗模型方面,日本厚生劳动省于年率先将3D打印器官模型的费用纳入医疗保险支付范围;

近年来,我国相继批准了多个3D打印医疗模型上市,湖南、广东、河北、上海等省市已出台了对于3D打印医疗模型的收费标准。在手术导板方面,美国食品药品管理局(FDA)于年批准了用于儿童的3D打印手术截骨导板;

我国专家学者也积极推动3D打印手术导板相关法规和标准的制定,如中华医学会医学工程学分会数字骨科学组于年发布的《3D打印骨科手术导板技术标准专家共识》,以及《增材制造(3D打印)定制式骨科手术导板》《增材制造(3D打印)口腔种植外科导板》等若干项团体标准。

在假肢矫形器方面,国务院于年印发的《关于加快发展康复辅助器具产业的若干意见》指出,要加快增材制造技术在康复辅助器具产业中的应用。

康复辅具的分类

3D科学谷白皮书

目前,我国已经批准了3D打印定制式膝关节矫形器上市,并正积极推动3D打印矫形鞋垫、脊柱矫形器和假肢等代表性产品的技术标准制定和产业化发展。

3D打印鞋垫定制化的端到端解决方案

3D科学谷白皮书

不可降解再生的硬组织植入物

增材制造医疗器械发展的第二层面是由惰性材料制成的硬组织替代物,包括骨、关节及口腔等部位的替代物。该类替代物长期与人体骨骼、肌肉或体液接触,因此对于材料有较高的生物相容性要求,目前所使用的材料主要包括金属、陶瓷及聚合物等。

得益于激光粉末床熔融技术和电子束粉末床熔融技术的快速发展,金属材料被广泛用于硬组织替代物的3D打印,其中钛系、钴铬钼系、钽系合金由于具备较好的生物相容性、耐蚀性、抗疲劳性和耐摩擦磨损性能,获得了广泛应用。然而,金属材料的硬度和刚度远大于人体骨骼,植入人体内易引发应力屏蔽效应,会导致替代物松动的情况发生。

3D打印金属生物材料

3D科学谷白皮书

3D打印钛合金植入物3D科学谷白皮书

为了避免应力屏蔽现象,可通过3D打印技术制作具有多孔结构的骨植入物,一方面能够通过调节孔隙率来调整骨植入物的刚度;另一方面,多孔结构有利于骨植入物周围组织长入,通过新骨生成增强骨植入物与人体组织有效整合,充分利用了增材制造技术成形复杂结构的优势。

3D打印椎间融合器

3D科学谷白皮书

以羟基磷灰石和磷酸三钙为代表的生物陶瓷材料,成分与自然骨接近,且骨诱导能力优异。经3D打印技术制作后,具有多孔结构的生物陶瓷材料能为骨细胞提供适宜生长的三维环境。不过,陶瓷类材料由于脆性较大,难以作为承重的骨植入物材料。

3D打印陶瓷技术

3D科学谷白皮书

近年来,聚醚醚酮在3D打印硬组织替代物领域的应用受到广泛

转载请注明:http://www.aideyishus.com/lkgx/2601.html

------分隔线----------------------------